Inter-areal neural routing states emerge and switch during oscillatory bursts and with attention

We have a new major finding published at Neuron. We found that spiking in different areas (ACC, Striatum, LPFC) engage in ~20ms wide correlations, and that this coordinated activity has systematic time lags that correspond to the anatomical connectivity. These ‘baseline routing states’ are amplified during beta bursts, and switch directionality (between ACC and PFC) during bursts in the theta frequency band (and with attention and during a choice).

The paper has multiple unique analyses and findings, is backed up by biophysically realistic modeling and shows that the specific neurons that contribute to a directionally leading routing state can be identified.

The implications of this paper can be huge, as it documents a neuronal ensemble mechanism that correlates in 20ms time windows during inter-areal coordination. Kudos to Kianoush Banai Boroujeni to have pulled off such a comprehensive and sophisticated novel insight !

Related News

Fronto-Striatal Circuits Optimize Feature-based Attention and Learning

Our new publication (Oemisch et al. (2018) Feature Specific Prediction Errors and Surprise across Macaque Fronto-Striatal Circuits during Attention and Learning) provides the first 4-brain-area survey of how prediction error information in the anterior cingulate – ventral striatum and lateral prefrontal – caudate fronto-striatal loops relate to feature-based attention and learning. We found prediction errors […]

Interneuron-specific gamma synchrony indexes uncertainty resolution

Our new paper in eLife shows that a subclass of fast spiking interneurons in prefrontal and anterior cingulate cortex gamma synchronizes when uncertainty about cues and outcomes is resolved. This finding was possible by classifying narrow spiking neurons into fast and non-fast spiking classes and correlating their firing and spike-LFP synchrony during processing of attention […]

M1-selective allosteric modulation enhances cognitive flexibility

We have new research out at PNAS about enhancing cognitive flexibility with highly selective allosteric modulation of the M1 muscarinic receptor (pdf: here)! Muscarinic receptors are known to mediate pro-cognitive effects of acetylcholine, but it has remained unclear whether they differentially affect the cognitive subfunctions of attentional filtering, set shifting, and learning. To clarify the […]