Fronto-Striatal Circuits Optimize Feature-based Attention and Learning

Our new publication (Oemisch et al. (2018) Feature Specific Prediction Errors and Surprise across Macaque Fronto-Striatal Circuits during Attention and Learning) provides the first 4-brain-area survey of how prediction error information in the anterior cingulate – ventral striatum and lateral prefrontal – caudate fronto-striatal loops relate to feature-based attention and learning. We found prediction errors that encode the specific stimulus feature that was reward relevant. This coding took place with stimuli having multiple feature dimensions. Reporting that neurons track the specific reward relevant feature suggests an attractive solution of credit assignment through a distributed feature-specific eligibility trace enabling ‘goal-directed’ synaptic plasticity changes across the entire fronto-striatal network.

Related News

2017 E.W.R. Steacie Memorial Fellowship Award

What an honour and incredible acknowledgment of our research – Thilo received the 2017 E.W.R. Steacie Memorial Fellowship Award with five fellow scientists in Canada and across the Natural Sciences and Engineering. This is one of the most prestigious awards for young scientists in Canada, celebrating the critical role of fundamental, basic research for driving […]

Phase-specific Activation Induces Latent Connectivity Changes

A recent paper provides rare causal evidence that phase-specific stimulation during beta oscillation bursts lead to transient changes in effective (latent) connectivity. This finding and its potentially widespread implications are discussed in our paper Womelsdorf T, Hoffman K (2018) Latent Connectivity: Neuronal Oscillations Can Be Leveraged for Transient Plasticity. Current Biology. 28(16):R879-R882..

Acetylcholinergic Drug enhances attention at different dose as cognitive flexibility

Acetylcholinergic Drug enhances attention at different dose as cognitive flexibilityWe tested how a cholinergic drug that is used to treat symptoms of dementia (donepezil, Arizept) affects cognitive abilities across multiple domains in monkeys. We found that donepezil showed stunning improvements of attentional filtering (less distraction) during visual search but at a different dose at it […]