Interneuron-specific gamma synchrony indexes uncertainty resolution

Our new paper in eLife shows that a subclass of fast spiking interneurons in prefrontal and anterior cingulate cortex gamma synchronizes when uncertainty about cues and outcomes is resolved. This finding was possible by classifying narrow spiking neurons into fast and non-fast spiking classes and correlating their firing and spike-LFP synchrony during processing of attention cues and reward outcomes in a reversal learning task. In prefrontal cortex the interneurons of the fast spiking subclass synchronized after cue onset during learning when there was uncertainty about the value of different stimuli. In anteiror cingulate cortex the same type of fast spiking interneuron class gamma synchronized after rewards were delivered, but only when the reward predictions errors were high during learning, i.e. when outcomes were uncertain. Computational modeling showed that the interneuron specific gamma synchrony could reflect a soft gating of competing excitatory inputs.
These findings are of fundamental importance for understanding cell type specific circuit functions and might be the first characterization of interneurons in the primate prefrontal cortices during higher cognitive learning performances. The paper can be downloaded

Related News

Large-scale support awarded for advanced Neuro-Behavioral Monitoring

Thilo Womelsdorf, Kari Hoffman and eight more members of a large-scale initiative received a large-scale infrastructure support grant from the Canada Foundation for Innovation, amounting to $3.1M federal support. This extraordinary award allows establishing – in Toronto- an advanced neuroscience infrastructure for conducting research of brain activity and behavior close to real world settings. For a press release see […]

First Neuropharmacological Contribution

Congratulations to Ali and Mariann for the first neuropharmacological contribution from our laboratory with the article A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque . This study first surveys all 14 different tasks that have ever been used with Guanfacine in nonhuman primate studies and than […]

New Open-Source Experimental Suite for 3D experiments in monkeys, humans, and artificially intelligent agents

Our new open-source suite for experiments in virtual 3D environments is accepted at J Neurosci Methods and downloadable here. This suite is a complete software (using Unity3D) and hardware (using Arduinos) solution for conducting experiments in 3D environments. It allows running the same experiment in touchscreen, gaze control, or joystick mode (for humans and animals), […]