Interneuron-specific gamma synchrony indexes uncertainty resolution

Our new paper in eLife shows that a subclass of fast spiking interneurons in prefrontal and anterior cingulate cortex gamma synchronizes when uncertainty about cues and outcomes is resolved. This finding was possible by classifying narrow spiking neurons into fast and non-fast spiking classes and correlating their firing and spike-LFP synchrony during processing of attention cues and reward outcomes in a reversal learning task. In prefrontal cortex the interneurons of the fast spiking subclass synchronized after cue onset during learning when there was uncertainty about the value of different stimuli. In anteiror cingulate cortex the same type of fast spiking interneuron class gamma synchronized after rewards were delivered, but only when the reward predictions errors were high during learning, i.e. when outcomes were uncertain. Computational modeling showed that the interneuron specific gamma synchrony could reflect a soft gating of competing excitatory inputs.
These findings are of fundamental importance for understanding cell type specific circuit functions and might be the first characterization of interneurons in the primate prefrontal cortices during higher cognitive learning performances. The paper can be downloaded
here.

Related News

The phase of firing of fronto-striatal neurons encodes learning variables

Our new paper shows that neurons in the striatum, anterior cingulate and prefrontal cortex encode learning variables in the phase of firing. We outline a powerful regression based analysis pipeline that revealed spiking activity of neurons relative to the phase of beta oscillations carries significant learning information during reversal learning. The paper can be downloaded […]

3 minute Thesis Competition

Congratulations to Ben to win the York University 3 minute thesis competition in presenting his MSc graduation work ! Here is the University’s press release about the 2016 YorkU 3MT Winner ! Good luck from the laboratory when moving to the provincial level competition (still with only 3 minutes…for the whole thesis).

Fronto-Striatal Circuits Optimize Feature-based Attention and Learning

Our new publication (Oemisch et al. (2018) Feature Specific Prediction Errors and Surprise across Macaque Fronto-Striatal Circuits during Attention and Learning) provides the first 4-brain-area survey of how prediction error information in the anterior cingulate – ventral striatum and lateral prefrontal – caudate fronto-striatal loops relate to feature-based attention and learning. We found prediction errors […]