The phase of firing of fronto-striatal neurons encodes learning variables

Our new paper shows that neurons in the striatum, anterior cingulate and prefrontal cortex encode learning variables in the phase of firing. We outline a powerful regression based analysis pipeline that revealed spiking activity of neurons relative to the phase of beta oscillations carries significant learning information during reversal learning. The paper can be downloaded here. We first show that there is widespread beta-synchronization of spikes and LFP beta activity across the fronto-striatal network. For neurons signifiantly synchronizing to this network the phase at which they spike is signifisntly more infomrative that the phase-blind rate code.

Related News

A Novel Monkey Kiosk: Cognitive Enrichment and Cognitive Assessment

We now published the hardware and software design for a novel Monkey Kiosk Station that provides cognitive enrichment and the ability to assess cognition with cage-based touchscreen tasks. The paper and its appendix with the technical details are available here.

M1-selective allosteric modulation enhances cognitive flexibility

We have new research out at PNAS about enhancing cognitive flexibility with highly selective allosteric modulation of the M1 muscarinic receptor (pdf: here)! Muscarinic receptors are known to mediate pro-cognitive effects of acetylcholine, but it has remained unclear whether they differentially affect the cognitive subfunctions of attentional filtering, set shifting, and learning. To clarify the […]

Theta and Beta Frequency

Theta and beta frequency range coherence between anterior cingulate cortex and frontal eye field indexes the successful preparation for anti-saccades and maintenance of working memory content – with larger ACC to FEF direction of granger causal information flow! These important findings is now published in Nature Communications by Sahand Babapoor-Farrokhran and Stefan Everling with contributions […]