Fronto-Striatal Circuits Optimize Feature-based Attention and Learning

Our new publication (Oemisch et al. (2018) Feature Specific Prediction Errors and Surprise across Macaque Fronto-Striatal Circuits during Attention and Learning) provides the first 4-brain-area survey of how prediction error information in the anterior cingulate – ventral striatum and lateral prefrontal – caudate fronto-striatal loops relate to feature-based attention and learning. We found prediction errors that encode the specific stimulus feature that was reward relevant. This coding took place with stimuli having multiple feature dimensions. Reporting that neurons track the specific reward relevant feature suggests an attractive solution of credit assignment through a distributed feature-specific eligibility trace enabling ‘goal-directed’ synaptic plasticity changes across the entire fronto-striatal network.

Related News

Effective Connectivity Shows Asymmetries in Resonance and Latencies between Medial and Lateral Prefrontal Cortex Connections

The lab has a first article published about the strength, latency and resonance patterns of connections between the anterior cingulate cortex and lateral prefrontal cortex of the macaque. This work was led by postdoc Veronica Nacher and is published in Brain Structure and Function. The paper identifies a novel electrical microstimulation protocol that can be […]

Acetylcholinergic Drug enhances attention at different dose as cognitive flexibility

Acetylcholinergic Drug enhances attention at different dose as cognitive flexibilityWe tested how a cholinergic drug that is used to treat symptoms of dementia (donepezil, Arizept) affects cognitive abilities across multiple domains in monkeys. We found that donepezil showed stunning improvements of attentional filtering (less distraction) during visual search but at a different dose at it […]

New Open-Source Experimental Suite for 3D experiments in monkeys, humans, and artificially intelligent agents

Our new open-source suite for experiments in virtual 3D environments is accepted at J Neurosci Methods and downloadable here. This suite is a complete software (using Unity3D) and hardware (using Arduinos) solution for conducting experiments in 3D environments. It allows running the same experiment in touchscreen, gaze control, or joystick mode (for humans and animals), […]