New Open-Source Experimental Suite for 3D experiments in monkeys, humans, and artificially intelligent agents

Our new open-source suite for experiments in virtual 3D environments is accepted at J Neurosci Methods and downloadable here. This suite is a complete software (using Unity3D) and hardware (using Arduinos) solution for conducting experiments in 3D environments. It allows running the same experiment in touchscreen, gaze control, or joystick mode (for humans and animals), AND to run the same experiment with a screenshot-based artificial intelligence (reinforcement learning) agent.
The suite comes with an extensive User Manual, Instructions to get started and Example Experiments using traditional 2D and more complex 3D renderings. See: Watson et al (2019) USE: An integrative suite for temporally-precise psychophysical experiments in virtual environments in human, nonhuman and artificially intelligent agents. J Neurosci Methods.

Related News

First Neuropharmacological Contribution

Congratulations to Ali and Mariann for the first neuropharmacological contribution from our laboratory with the article A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque . This study first surveys all 14 different tasks that have ever been used with Guanfacine in nonhuman primate studies and than […]

ACC causally supports learning -difficult- attention sets

We used focused ultrasound (FUS) sonication of the anterior cingualte and striatum to disrupt local processing during learning. FUS in ACC slowed down learning of atetntion sets – but only when the attentional demands were high and the task included the risk of loosing already attaiuned reward tokens. Under these cognitive and motivaitonally challenging conditions […]

Theta and Beta Frequency

Theta and beta frequency range coherence between anterior cingulate cortex and frontal eye field indexes the successful preparation for anti-saccades and maintenance of working memory content – with larger ACC to FEF direction of granger causal information flow! These important findings is now published in Nature Communications by Sahand Babapoor-Farrokhran and Stefan Everling with contributions […]