Fronto-Striatal Circuits Optimize Feature-based Attention and Learning

Our new publication (Oemisch et al. (2018) Feature Specific Prediction Errors and Surprise across Macaque Fronto-Striatal Circuits during Attention and Learning) provides the first 4-brain-area survey of how prediction error information in the anterior cingulate – ventral striatum and lateral prefrontal – caudate fronto-striatal loops relate to feature-based attention and learning. We found prediction errors that encode the specific stimulus feature that was reward relevant. This coding took place with stimuli having multiple feature dimensions. Reporting that neurons track the specific reward relevant feature suggests an attractive solution of credit assignment through a distributed feature-specific eligibility trace enabling ‘goal-directed’ synaptic plasticity changes across the entire fronto-striatal network.

Related News

ACC causally supports learning -difficult- attention sets

We used focused ultrasound (FUS) sonication of the anterior cingualte and striatum to disrupt local processing during learning. FUS in ACC slowed down learning of atetntion sets – but only when the attentional demands were high and the task included the risk of loosing already attaiuned reward tokens. Under these cognitive and motivaitonally challenging conditions […]

Inter-areal neural routing states emerge and switch during oscillatory bursts and with attention

We have a new major finding published at Neuron. We found that spiking in different areas (ACC, Striatum, LPFC) engage in ~20ms wide correlations, and that this coordinated activity has systematic time lags that correspond to the anatomical connectivity. These ‘baseline routing states’ are amplified during beta bursts, and switch directionality (between ACC and PFC) […]

New Multi-task cognitive profiling platform for NHPs+humans

We published a new unity based software platform for profiling cognitive and motivational constructs in nonhuman primates and humans. The platform has multiple pre-configured tasks with some gamified features that makes them engaging to play for participants. Details are described and linked on the website: http://m-use.psy.vanderbilt.edu. The technical details are available in Watson et al. […]