Adaptive Learning needs Attention, Meta-learning and Working Memory

We tested which model mechanisms best explain how six animals learn attention sets and found a common set of most-important behavioral mechanisms that account for learning success.
When learning attention sets is easy value based reinforcement learning and working memory are powerful, but when learning problems are more complex learning is more efficient with attention and a meta-learning process that help speeding up learning when errors accumulate. (See our paper Womelsdorf at al. (2022) Learning at variable attentional load requires cooperation between working memory, meta-learning and attention-augmented reinforcement learning. Journal of Cognitive Neuroscience 34(1) 79-107.)

Related News

Interneuron-specific gamma synchrony indexes uncertainty resolution

Our new paper in eLife shows that a subclass of fast spiking interneurons in prefrontal and anterior cingulate cortex gamma synchronizes when uncertainty about cues and outcomes is resolved. This finding was possible by classifying narrow spiking neurons into fast and non-fast spiking classes and correlating their firing and spike-LFP synchrony during processing of attention […]

Fronto-Striatal Circuits Optimize Feature-based Attention and Learning

Our new publication (Oemisch et al. (2018) Feature Specific Prediction Errors and Surprise across Macaque Fronto-Striatal Circuits during Attention and Learning) provides the first 4-brain-area survey of how prediction error information in the anterior cingulate – ventral striatum and lateral prefrontal – caudate fronto-striatal loops relate to feature-based attention and learning. We found prediction errors […]

Striatum interneurons track learning of attention cues

Our new paper shows how fast spiking interneurons in the striatum activate specifically when attention cues are learned. This is a rare paper where we succeed to isolate fast spiking interneurons in recordings from nonhuman primate anterior striatum while the animals performed a complex feature-based attentional learning task. Phd can. Kia Banaeie Boroujeni spearheaded the […]