Adaptive Learning needs Attention, Meta-learning and Working Memory

We tested which model mechanisms best explain how six animals learn attention sets and found a common set of most-important behavioral mechanisms that account for learning success.
When learning attention sets is easy value based reinforcement learning and working memory are powerful, but when learning problems are more complex learning is more efficient with attention and a meta-learning process that help speeding up learning when errors accumulate. (See our paper Womelsdorf at al. (2022) Learning at variable attentional load requires cooperation between working memory, meta-learning and attention-augmented reinforcement learning. Journal of Cognitive Neuroscience 34(1) 79-107.)

Related News

New 3D-object type with controllable feature space published with open-sourced code

The lab has a new publication showcasing and describing details of Quaddles: A multidimensional 3D object set with parametrically-controlled and customizable features. Quaddles have 5+ feature dimensions, each with multiple possible feature values that can be parametrically morphed, making it possible to generate a near arbitrary number of unique objects. Thanks to Marcus and Milad […]

First Neuropharmacological Contribution

Congratulations to Ali and Mariann for the first neuropharmacological contribution from our laboratory with the article A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque . This study first surveys all 14 different tasks that have ever been used with Guanfacine in nonhuman primate studies and than […]

M1-selective allosteric modulation enhances cognitive flexibility

We have new research out at PNAS about enhancing cognitive flexibility with highly selective allosteric modulation of the M1 muscarinic receptor (pdf: here)! Muscarinic receptors are known to mediate pro-cognitive effects of acetylcholine, but it has remained unclear whether they differentially affect the cognitive subfunctions of attentional filtering, set shifting, and learning. To clarify the […]