New Open-Source Experimental Suite for 3D experiments in monkeys, humans, and artificially intelligent agents

Our new open-source suite for experiments in virtual 3D environments is accepted at J Neurosci Methods and downloadable here. This suite is a complete software (using Unity3D) and hardware (using Arduinos) solution for conducting experiments in 3D environments. It allows running the same experiment in touchscreen, gaze control, or joystick mode (for humans and animals), AND to run the same experiment with a screenshot-based artificial intelligence (reinforcement learning) agent.
The suite comes with an extensive User Manual, Instructions to get started and Example Experiments using traditional 2D and more complex 3D renderings. See: Watson et al (2019) USE: An integrative suite for temporally-precise psychophysical experiments in virtual environments in human, nonhuman and artificially intelligent agents. J Neurosci Methods.

Related News

New 3D-object type with controllable feature space published with open-sourced code

The lab has a new publication showcasing and describing details of Quaddles: A multidimensional 3D object set with parametrically-controlled and customizable features. Quaddles have 5+ feature dimensions, each with multiple possible feature values that can be parametrically morphed, making it possible to generate a near arbitrary number of unique objects. Thanks to Marcus and Milad […]

Interneuron-specific gamma synchrony indexes uncertainty resolution

Our new paper in eLife shows that a subclass of fast spiking interneurons in prefrontal and anterior cingulate cortex gamma synchronizes when uncertainty about cues and outcomes is resolved. This finding was possible by classifying narrow spiking neurons into fast and non-fast spiking classes and correlating their firing and spike-LFP synchrony during processing of attention […]

Fronto-Striatal Circuits Optimize Feature-based Attention and Learning

Our new publication (Oemisch et al. (2018) Feature Specific Prediction Errors and Surprise across Macaque Fronto-Striatal Circuits during Attention and Learning) provides the first 4-brain-area survey of how prediction error information in the anterior cingulate – ventral striatum and lateral prefrontal – caudate fronto-striatal loops relate to feature-based attention and learning. We found prediction errors […]