M1-selective allosteric modulation enhances cognitive flexibility

We have new research out at PNAS about enhancing cognitive flexibility with highly selective allosteric modulation of the M1 muscarinic receptor (pdf: here)!

Muscarinic receptors are known to mediate pro-cognitive effects of acetylcholine, but it has remained unclear whether they differentially affect the cognitive subfunctions of attentional filtering, set shifting, and learning. To clarify the functional specificity of M1 mAChRs, we assessed these diverse functions using a recently developed, highly selective M1 PAM developped at the Warren Center of Neuroscience Drug Discovery by co-authors Prof. Jones and Dr. Russel. This novel M1 PAM caused domain-specific cognitive improvement of flexible learning and extradimensional set shifting, reduced perseverations and enhanced target recognition during learning without altering attentional filtering functions. These domain-specific improvements contrasted to effects of a nonselective acetylcholinesterase inhibitor that primarily enhanced attention and caused dose-limiting adverse side effects. These results demonstrate domain-specific improvements in cognitive flexibility suggesting M1 PAMs are versatile compounds for treating cognitive deficits in schizophrenia and Alzheimer’s disease.

Related News

ACC causally supports learning -difficult- attention sets

We used focused ultrasound (FUS) sonication of the anterior cingualte and striatum to disrupt local processing during learning. FUS in ACC slowed down learning of atetntion sets – but only when the attentional demands were high and the task included the risk of loosing already attaiuned reward tokens. Under these cognitive and motivaitonally challenging conditions […]

First Neuropharmacological Contribution

Congratulations to Ali and Mariann for the first neuropharmacological contribution from our laboratory with the article A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque . This study first surveys all 14 different tasks that have ever been used with Guanfacine in nonhuman primate studies and than […]

Inter-areal neural routing states emerge and switch during oscillatory bursts and with attention

We have a new major finding published at Neuron. We found that spiking in different areas (ACC, Striatum, LPFC) engage in ~20ms wide correlations, and that this coordinated activity has systematic time lags that correspond to the anatomical connectivity. These ‘baseline routing states’ are amplified during beta bursts, and switch directionality (between ACC and PFC) […]