Creating Symmetrical Quaddles (4th Edition)
Milad Naghizadeh 2017
[image:]
Legend
Part 1: Started from the bottom (Installing and starting 3ds Max)
Part 2: Creating Objects Manually
Part 3: Creating Objects Using Existing Scripts
Part 4: Main Script Outline
Part 5: Functions List
Part 6: Other Scripts
Part 1: Started from the bottom (Installing and starting 3ds Max)
First thing you need to do is download and install Autodesk® 3ds Max 2017. You can do this at https://www.autodesk.com/education/free-software/3ds-max. Alternatively you may google “3ds max student license” and it should be the first or second link.
[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Screenshot 2017-06-28 17.54.23.png]
You need to create an account or sign in to an existing account. If you are affiliated with an educational institution and not intending to use the software for commercial reasons you will be able to install the software on two personal devices.
[image:]
If you are creating an account for the first time, you will need to provide an email address and will need to access that email to activate the account. You will be required to indicate your educational institution and your role in it.
[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Screenshot 2017-06-29 12.48.54.png]
After creating an account you’ll be able to specify 3ds Max 2017, your O.S., language and you will be ready to install. Make sure to record your serial number. Click “INSTALL NOW” and you’ll be ready to rumble!
[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Screenshot 2017-06-29 12.52.48.png]
Autodesk will also send you an email indicating your product key, and serial number.
At this point, after you’ve downloaded the installer, all you need to do is follow the on-screen instructions, and type in the product key and/or serial number when prompted.
[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Screenshot 2017-06-29 13.42.54.png]
Tip: It may cause you less headache later on so it’s a good idea to set the default for the program to be run as administrator.
Right click on 3ds Maxclick properties Open compatibility tab Make sure “Run as administrator” is checked
Opening Software
[image:]
[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Screenshot 2017-06-29 14.00.42.png]
When you first start up the software, you’ll have the option of choosing a number of start-up templates. Choose Original.
[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Screenshot 2017-06-29 14.03.42.png]
You’ll be greeted with a standard viewport such as this, and have four different perspective views. Clicking any one of these perspective views and pressing Alt+W will make that window take up the whole screen.
Getting your feet wet
Play around with the tools and get familiarized with the UI. It’s recommended that if you’re a beginner to try out some standard tutorials freely available online such as this one where you make a model helmet;
https://knowledge.autodesk.com/support/3ds-max/getting-started/caas/CloudHelp/cloudhelp/2015/ENU/3DSMax-Tutorial/files/GUID-39B2F89C-ED74-45F9-8B5F-0274DC20C3FD-htm.html
Other introductory tutorials;
https://knowledge.autodesk.com/support/3ds-max/getting-started?sort=score
Using a Mouse
Using a mouse will make using the software a lot easier. Using the following shortcuts makes it much easier to view objects from different perspectives
Scroll wheel – Using the scroll wheel you can zoom in and out
Hold Alt + Push down on scroll wheel and move mouse – Rotating view/perspective
Push down scroll wheel and move mouse – Drags and moves perspective from same angle
Other Shortcuts:
F4 – Shows surface polygons on objects
M – Brings up material editor window
f11 – Brings up maxscript Listener window (important for debugging)
Ctrl+e – Runs a Script that’s currently selected
G – Shows and hides grid
Congratulations! Now the real fun can begin and you can start your adventures in the world of 3D modeling.

Part 2: Creating Objects manually
..and now we’re here
[image: Screenshot 2017-01-30 17]
To start off, all objects are created as a rectangle with the same basic dimensions. Click CreateStandard Primitives Box
[image: hi]
Use the curser to create the dimensions of the box. The box’s position on the grid can be set using the X,Y,Z coordinates at the bottom of the screen after selecting the “select and move” tool. (See icon below and red labels above).
[image: Screenshot 2017-01-31 14.40.15]
 Similarly, the box’s length, width, height, and number of segments its divided into can be adjusted by accessing “Parameters” in the modify tab to the right of the screen (see yellow above). In our case, we created a 20x20x40 rectangle divided into 10x10x10 segments (note:Pressing f4 allows us to actually see these segments)
[image: Screenshot 2017-01-30 17]
Clicking the modifier list, we add the “spherify” modifier to the object. This will allow us to create an object with a “puffy” look later, when we deform it into the shapes we want.
[image: Screenshot 2017-01-30 17]
Using the same modifier list, we also add the “ffd_3x3x3” modifier (free form deformation modifier) to the sphere. At this point, creating the shape of the object body we want is merely a matter of moving these control points (for a detailed explanation of the deformations at the control points, see script functions).
Note: Other FFD modifiers exist as well which allow you to have more control points. Ffd_3x3x3 was used for all objects that we created.
To move control points, select the arrow next to “FFD 3x3x3” Select Control Points, and select the “select and move tool” [image: Screenshot 2017-01-31 14.40.15]. You should be able to manipulate each individual control point.

Giving objects more smooth shape[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\before.png]
Adding the “Tesselate” modifier to our objects will smoothen our objects a bit, making them less jagged and rounded, increasing the polygon count in the process (see before and after above). Adding more polygons will make patterns apply to the objects in a slightly nicer way as well.
Keep in mind that whenever you add more polygons to a game object, more computational resources will be needed to render it in any software.

Adding materials to objects
[image: Screenshot 2017-01-30 18]
Press “m” to bring up the default materials editer. Click on an empty sphere, and then the checkbox next to “Diffuse”. This will open up the material browser window.[image: Screenshot 2017-01-30 18]
Type and search “bitmap” to open the following window.
[image: Screenshot 2017-01-30 18]
Here, you find the texture you want to add. Once it’s selected, it will appear on the material map editor. At this point, all you have to do now is drag the bitmaptexture from the sphere on the material editor onto the object surface you want to add it to.
[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\material editor.png]
After applying the material to the object, make sure to click the “Show material in viewport” option [image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\showmaterial.png] otherwise you won’t be able to see the textures that you’re working with.
[image: Screenshot 2017-01-30 18]
However, you may notice that the object at this point still appears to have no material added to it still. You will need to add the “UVW Map” modifier to the object, for the texture to appear. Again this can be added by accessing the modifier list in the modify tab.
[image: Screenshot 2017-01-30 19]
The mapping settings can be changed to ensure that the texture wraps the object in the way that you want it to. Depending on the type of pattern that you’re trying to apply, it can be very difficult to ensure it wraps around the object nicely. You may have to experiment around with different wrapping settings if you’re using a different pattern.
For the current version of the objects used; for the oblong rectangular shape, Spherical mapping was used and for the pyramidal shape, Cylindrical mapping was used.
For the Checkered Pattern, the following UVW mapping dimensions were used.
Length: 40
Width: 40
Height: 60
For the Diamond Pattern, the following dimensions were used;
Length: 40
Width: 40
Height: 100

Creating and adding Arms
[image: Screenshot 2017-01-31 14]
Click Create Standard PrimitivesCylinder.
[image: Screenshot 2017-01-31 14]
Similar to before, we can change the dimensions of the cylinder we just made by accessing “Parameters” in the “modify” tab. For our arms, they were of radius 4, height 25 and divided into 10 segments.
[image: Screenshot 2017-01-31 14]
In order to have the correct orientation for the arm, we need to select the rotate tool, and then either change the orientation with the curser on the object or put in the desired orientation using the x, y, z angles on the bottom of the page.
[image: Screenshot 2017-01-31 14]
By selecting the “select and move” tool, we can move the arm into the main body. Holding shift, whilst moving the arm will replicate the arm. Using the combination of both the “rotate” and “select and move” tools, we create 4 different arms which can be evenly positioned within the body of the object.
(Note: When we create copies of the original arm, a pop up window will appear asking how we want to make copies of the original object. It can help to make the copies “instances” of the original, in order to ensure that all modifiers added to the original arm will also be added to the other arms)
[image: Screenshot 2017-01-31 14]
Using the “Top” viewport and Wireframe can help us evenly embed our arms. For our objects, we embed the arms in the body by 7 units.

[image: Screenshot 2017-01-31 14]
Similar to how we added, the spherify, ffd_3x3x3, and UVW_map modifiers to the body of the object before, we add a “bend” modifier to the arms. The desired angle we want can be set in the “Parameters” box. In our case we used a 42 degree bend in the z-axis; using a negative degree bend will bend the arms upwards.

Grouping Objects
[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Screenshot 2017-06-29 17.16.52.png]
At this point, your object consists really of 4 separate objects. In order to group them, make sure that the body and all branches are selected and hit the Group tab click Group
Note: In order to ungroup select object, click group explode

Exporting Objects
[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Screenshot 2017-06-30 10.29.58.png]
In order to export, first select the object that you want exported and click the 3ds Max icon at the top left [image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\1.png] Click Export [image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\export as.png] Select Export Selected [image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\exportselected.png]. You will then have to specify where you want the object saved and the kind of 3d object you want it to be. Typically if you want to use the objects for another game engine such as Unity, you should save the file as .FBX
NOTE: If you want to save the object as an .stl file for 3d printing, select export instead of “Export Selected”.
[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\fbxexport.png]
For the export settings that will pop up, under Include Embed Media, **make sure embed Media is checked, otherwise the materials won’t be exported attached to the object.
Your Object is now ready to be imported into any game engine!

[bookmark: _GoBack]
Part 3: Creating Objects Using Existing Scripts
Here, I will outline how to use the existing scripts without diving too deep into the code.
1st Check: All Scripts are in the same folder as “Main_Script”
[image:]
As the name, suggests, “Main_Script.ms” is the master script which calls upon all other functions to create the objects. The most important other functions are in “FunctionsList.ms” however they are also contained in other scripts (for example “Script_TakePics.ms” is called to generate png and jpg pictures of the objects).
In order for “Main_Script” to properly function, all of the scripts need to be in the same folder as it.
2nd Check: Textures/Patterns are available
As you can see in the image above, you should also have png textures available which will be used by the script to generate objects.
When you generate these textures they should have the following naming convention in order to be recognized by the script;
	Pattern(X)+Colour(Y).png or Pattern(X).png or Colour(Y).png
	For example;
	Pattern(Checkered)+Colour(More_Orange).png
In your texture folder, you must include the png files we provide in order to create our objects.
3rd Check: Change Folder paths
When you first download the scripts, you have to change the folder paths in the main script for it to work. Luckily there are only three paths you have to change;

Note: Include double slashes (“\\”) when indicating folder directories in Maxscript
Dimensions and values
One of the two most important variables in the whole script is “dims” and “vals” because they dictate the list of dimensions , and feature values that the object(s) will have. By default they are set to the following;
[bookmark: _Hlk499582385]dims = #("Body", "Colour", "Arm_Angle", "Pattern")
vals = #(#("Pyramidal","Oblong"), #("More_Red","More_Orange"), #("Bent_Up","Bent_Down"), #("Diamond","Checkered"))
Note that the order of feature values (“vals”) should correspond to the order of the feature dimensions (“dims”) that they’re contained in. (for example, “Body” is the first element of dims, and so are “Pyramidal” and “Oblong” in vals).
By default, the script will generate all possible combinations of features, unless an objTable is provided.
The following is a full list of all the possible values of “dims” and “vals” which can be used to make objects;
	Body
	Colour
	Pattern
	Arm_Angle
	Arm_Ends
	Smoothness
	Transparency

	Pyramidal
	More_Red
	Diamond
	Bent_Up
	Pointed
	Smooth
	Opaque

	Oblong
	More_Orange
	Checkered
	Bent_Down
	Blunt
	Wrinkled
	Transparent

	Compressed_Oblong
	
	
	Straight
	Flat
	Inward_Protrusions
	

	Octahedron
	
	
	
	Flared
	Outward_Protrusions
	

	Cubic
	
	
	
	
	Blocky
	

	Spherical
	
	
	
	
	Hairy
	

	Concave
	
	
	
	
	
	

	Convex
	
	
	
	
	
	

	Dumbbell
	
	
	
	
	
	

	Pepper
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

Done!
After making these 3 checks, you should be ready to just run “Main_Script.ms” by selecting it and hitting ctrl+e.
You will be greeted with a short copyright intro, after running the script.[image:]
You will need to click continue to generate the object set. Essentially, the important part here is that you are free to “use, copy, modify, merge, publish, distribute, sublicense…” etc. as long as you provide the copyright notice that we provide and give us credit.
The next section will go into a little more depth about how “Main_Script.ms” works.

Part 4: Main Script Outline
Copyright intro:
The main script to be run is “Main_Script” which makes use of functions in separate scripts. If you select “Main_Script” and hit ctrl+e you will run the script and greeted with a short copyright intro
fileIn "FunctionsList.ms"
Above the part of the script which generates the copyright pop-up window is a line that inserts the code of another script called “FunctionsList.ms”. This script will be covered later, however briefly, it contains all the main functions needed to generate the objects. In the way that maxscript works, functions need to be defined beforehand at the top of the script before they can be called.

Above you can see how the copyright pop-up screen is coded. With “try (closeRolloutFloater rof) catch()” we see if there are any other windows open with the name “rof” and close them if they are. A “rollout” is the window that pops up.
button 'continueButton' "Continue"
 ^This is defining the button at the bottom of the Window, and attaching the text “Continue” to it. It’s given a label of “continueButton”
	on continueButton pressed do
The main body of the main script is executed after the continue button is pressed.
	closeRolloutFloater
After the object generation is completed, this will close the window.
TIP: An easy way to create and edit rollout windows is using the maxscript “rollout editor” GUI. To access it, in MAXscript click Tools Edit Rollout. You will get a window like the one below.
[image:]
Outline of Main Script:
Inside the copyright rollout window brackets you will see the following code…
sysInfo.currentdir = "C:\\Users\\Milad\\Documents\\3dsMax\\important Scripts 2.0\\Quaddle_Generation_27\\"
Whatever you set the current directory to, all the scripts need to be located in that folder. In this case, the current directory is set to “Quaddle_Generation_27” folder
Defining the folder paths
--FOLDER PATHS--
objTable = openFile "C:\\Users\\Milad\\Desktop\\objects test\\hi\\object_table.txt"
savePath = "C:\\Users\\Milad\\Desktop\\newObjs\\TESTING\\"
makeDir savePath
--textures for main body
textureMainPath = "C:\\Users\\Milad\\Documents\\3dsMax\\important Scripts 2.0\\Quaddle_Generation_27\\Patterns and Object Table\\Patterns and Colours\\"
In the next part of the script, you have to define the folder paths for the object Table (objTable), and where your objects will be saved (savePath). “textureMainPath” is the path to the textures you want to apply to your objects.
[image: Screenshot 2017-01-27 15.36]
Above is an example of the object table. This is a text file where each row represents one object, and each column represents a feature dimension. For example, if you are using the pyrimadal and oblong feature dimensions, the first column might represent a body dimension where 0 denotes a “pyramidal” shape and 1 denotes a “rectangular”(or oblong) shape.
Note that an object table is not necessary, and if the script can not find it, than it will generate all possible combinations of features on an object. If the script can not find an objTable or is not defined, than the variable of objTable will be set as “undefined”.
Defining Feature values and Dimensions
dims = #("Body", "Colour", "Arms", "Pattern")
vals = #(#("Pyramidal","Oblong"), #("More_Red","More_Orange"), #("Bent_Up","Bent_Down"), #("Diamond","Checkered"))

Two arrays called “dims” and “vals”, are the feature dimensions and feature values of the objects we want to create respectively.
Two other possible feature dimensions that are available to use are “Smoothness” and “Transparency” as well as other feature values within these dimensions(See below).
dims = #("Body", "Colour", "Arms", "Pattern",”Smoothness”,”Transparency”)
vals = #(#("Pyramidal","Oblong","Concave","Spherical","Octahedron","Cubic"), #("More_Red","More_Orange"), #("Bent_Up","Bent_Down","Straight","Blunt","Pointed","Coned"), #("Squiggly","Polka"),#("Wrinkled","Smooth"),#("Opaque","Transparent"))

objNames = #()
objNames is an empty array which we will store the names of all the objects we create in our object set.

pyramidpercentage = 0.5
oblongpercentage = 0.2
concavepercentage = 0
octahedronpercentage = 0
cubepercentage = 0
spherepercentage= 0.3	

If you set “Custom” as one of your object body features, than you have the option of creating objects that exist as intermediate values between body morphs. In the above code, we specificy that this custom object will have 50% pyramidal, 20% oblong, and 30% spherical character. Note that the values need to add up to 1! (0.5+0.2+0.3 = 1)

Is the object Table present or not?
			
if (objTable == undefined) then (readTheTable = false)
else (readTheTable = true)
If the script is unable to find the objTable, than it won’t try to extract the object details from it. Let’s examine the code that will generate the object table

With “seek objTable 0” we go to the first line of the object table…
Let’s go through this code step by step…
While not(eof objTable) do (
objDetails = readLine objTable
…
)
Each time we go through the while loop, the readLine function stores a line of the objTable into objDetails, and then automatically goes to the next line of objTable.
As long we don’t end up at the last line of the object table (eof objTable), then we keep going through the while loop.

Based on the values of objDetails(e.g 0 1 1 0), objvals is set to be a particular combination of features.
Note that within objDetails, tabs separate the values, such that we have 2x the number of dimensions + 1 in objDetails.count. In order to reach the maximum number of dimensions in the for-loop and not more we set the end point of the for-loop as (objDetails.count + 1)/2)
Considering the tabs, we want to access the 1st, 3rd, 5th, 7th etc values in objDetails instead of the 1st, 2nd,3rd & 4th. To get the proper index in objDetails, we do 2xdimCount – 1
objvals[dimCount] = vals[dimCount][objDetails[((2*dimCount)-1)] as integer + 1]
Since objDetails actually contains string arguments, we need to convert it to an integer using “as integer”.
We add one (+1), because Maxscript is not a zero-indexed language, and need to access the correct element in the vals array for a particular dimension.
	MakeObject()
MakeObject() function is called to create an object based on the values specificied in objvals.
As an example…
Suppose that we previously had set the feature values as follows
[bookmark: _Hlk496711040]vals = #(#("Pyramidal","Oblong"), #("More_Red","More_Orange"), #("Bent_Up","Bent_Down"), #("Diamond","Checkered"))
If the values of objDetails was (0 1 0 1), and we were on dimCount = 2, then
objvals[2] = vals[2][objDetails[3]+1]
objDetails[3] = 1 so therfore…
	objvals[2] = vals[2][1+1]
So therefore…
	objvals[2] = vals[2][2]
If we look at the previous array values for “vals”, then we notice that the second value, within the second array is "More_Orange". Therefore…
	objvals[2] = "More_Orange"
The second dimension of the object will be "More_Orange". The for-loop will continue untill all feature dimensions are filled.
For the objectDetails of (0 1 0 1), and vals of #(#("Pyramidal","Oblong"), #("More_Red","More_Orange"), #("Bent_Up","Bent_Down"), #("Diamond","Checkered")), then we will have the following values for objvals;
	objvals = #(“ Pyramidal”,” More_Orange”,” Bent_Up”,” Checkered”)
This will be fed into the MakeObject() function to create an object with these features. After this, the code will move to the next line in objTable to fill objDetails, and make the next object.
If there is no object table present.
If there is no object table present than the following code will be run…

The global variables objVals, allObjects, and i are all used the “DefineAllObjects()” function to generate all possible combinations of features on an object.
DefineAllObjects() is a recursive function, requires as input 1 in order to get started, and is found in “FunctionsList.ms”. After all objects are defined, we sequentially go through them in a for loop, store them in objVals, and then use MakeObject() to create the object based on objVals.

Part 5: Functions List
We will next cover the functions in “FunctionsList.ms”….
DefineAllObjects() (First Function in script)
The first function defined at the top of the script is DefineAllObjects(), which is called whenever we don’t provide an object table to explicitly define the objects we want to create.

It creates an array containing the feature values of all objects possible. It’s only input dimCount, must be initially set to 1 in order to work. Let’s go through it more in depth…
	for valCount = 1 to vals[dimCount].count do(
		objVals[dimCount] = vals[dimCount][valCount]
Starting from the first feature dimension (dimCount=1), we go count through all the feature values in that feature dimension.
if dimCount != vals.count then(
	DefineAllObjects(dimCount+1)
)
If we are not on the last feature dimension count, then we call the function itself again, and go to the next feature dimension (dimCount+1). The previous lines of code will be repeated until we get to the last feature dimension.
else if dimCount == vals.Count then(
i = i +1
temp = copy objVals #nomap
allObjects[i] = temp
)
On the last feature dimension, we store all values of objVals into the allObjects array, which is the ultimate output of this function when it’s finished. “Main_Script” takes this array, cycles through it and creates the objects based on it.

MakeObject() (Bottom of the Script)
Below the DefineAllObjects() function, you will find many other functions that take pictures, and videos of the objects, as well as create the main body, the arms, apply the pattern etc. As previously mentioned, functions which are called last or contained within other functions should be at the top of the script because they need to be defined before they can be called.
For the sake of simplicity we will jump to the “MakeObject()” function which is the last function in the script, and typically will be the first function to be called.

Here, we make an objName string for the object we are about to make. The name is based on the particular features (objVals) and dimensions (dims) of the object. As an example, an object may be called; “Body(Oblong)+Colour(More_Red)+Arms(Bent_Up)+Pattern(Checkered)”
	qArray = #()
qArray is an empty array which will be filled with all the quaddle components (e.g. body and arms).

“findItem” looks to see if any particular feature dimension is specified, and if so calls the function to make that dimension. Some of these functions take qArray as input, and fill it in with more values.
		group (qArray as array) name:objName
All elements in qArray are grouped together, and assigned the name we previously stored as a string.
	Takepics 20 120
The Takepics function takes two pictures of the object from a specified elevation, and distance. In this example, 20 degrees elevation and 120 distance is where the picture will be taken from.
Takevideo 20 120
The Takevideo function works in the exact same way except it takes videos of the objects rotating 360 degrees.

“select qArray” has the object selected for the exportFile to work.
FileDir and fileName delineate the directory of where the fbx is to be saved along with the file itself.
FBXExporterSetParam "EmbedTextures" true
exportFile fileName #noPrompt selectedOnly:true using:FBXEXP
delete qArray
Note that “EmbedTextures” is set to true, in order for the textures to export with the fbx file. This is equivalent to the “Embed Media” option, if we manually export the fbx files (see below).
#noPrompt means that there is no pop-up window when we export.

[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\fbxexport.png]
Finally “delete qArray” deletes the object in our scene so we can move to the next object, and so that it won’t be in the way when we take pictures or videos using some of the aforementioned functions.

MakeBody()
This function is called to make the main body of the object.
	fn MakeBody body:objVals[findItem dims "Body"] …
The index of dims which contains the word “Body” is the index of objVals which contains the feature value of the body dimension. The variable body is set to this body feature value (e.g. “Oblong” or “Pyramidal” for example)

Depending on the body feature value, more specific functions such as MakeOblongBody() are called. Only two are shown here for simplicity, however one exists for each body shape.
fn MakeOblongBody pattern = (include "Script_OblongBody.ms")
When these body functions are called, they make reference to separate scripts. With “include” its as if we’re essentially copy and pasting the code in.
	append qArray objbody
objbody is added to the initially empty qArray
bodyOutput = #(objbody,polygonner,qArray)
return bodyOutput
The end result output of MakeBody().

ApplyTexture()
This function applies the texture and proper UVW mapping to the object body

The script checks to see if there is a pattern or colour feature dimension specified by dims.
texturePath is location of the png texture that we want to use. Depending on the pattern and colour of the object being created, different png’s will be retrieved.
 NOTE: Your pngs must have the following naming system; “Pattern(Name of Pattern)+Colour(Name of Colour).png”

If you have only “Pattern” or only a “Colour” feature dimension, than the script will still look for your texture.
if (findItem dims "Body" != 0) then (body = objVals[findItem dims "Body"])
body variable is set.
	map = uvwmap()
The “UVW map” modifier needs to be added to every object for a texture or pattern to properly apply to that object. Here we are calling it “map”
Map Specifications
	map.maptype = 1
We have to set the “map type” of the UVW map meaning the kind of wrapping technique used to apply the textures to the objects. In this example, a map type of 1 means that a cylindrical mapping technique is used. For a map type of 2, a spherical mapping technique is used
NOTE: The most up to date version of the script uses cylindrical mapping (map.maptype = 1) for all objects except the oblong which uses spherical mapping (map.maptype = 2).
map.length = 80
map.width = 80	
map.height = 120
We might also want to change the dimensions of the wrapping in order to achieve something that looks more aesthetically pleasing.
map.utile = 2.5
map.vtile = 2.5
Similarly, we can change how many times a map is projected over the surface of an object. “U” and “V” are analogous to X & Y respectively.
A higher tiling number will cause smaller and more fine grained textures. There is an option to adjust the v-tiling as well however for most textures this won’t affect anything since it corresponds to the 3rd dimension, and most textures would normally be 2D.

Above we see an example of how we might apply different wrapping techniques depending on the texture, or object that it’s being applied to. In the above example, a Concave Polka object would have a different wrapping method than then a Concave Squiggly object, and both would have different wrapping from a completely different object shape.
outMap = Bitmaptexture fileName: (texturePath)
objbody.material = standardMaterial diffuseMap:(outMap) showInViewport:true;
We need to add the texture we want to to a “diffuseMap” which is a Bitmaptexture in our case. We then make the objects material as that diffuse map. Since a proper UVW modifier was previously added, and showInViewport is set to true, than at this point the objects should have a visible texture.
textureOutput = #(textureMainPath,map,objbody,outMap)
return textureOutput
The object, now with a texture applied is output by the function along with any folder paths it used or textures it applied.
MakeArms()
	fn MakeArms arms:objVals[findItem dims "Arms"]
Similar to other functions, the MakeArms() function creates a variable called “arms” and stores the specific feature value in that variable.
	if (arms == "Bent_Down") then
		listOfArms = MakeDefaultArms(45)(objName);
	else if (arms == "Bent_Up") then
		listOfArms = MakeDefaultArms(-45)(objName);
	else if (arms == "Straight") then
		listOfArms = MakeDefaultArms(0)(objName);
Depending on the feature value, different inputs are used to a separate more specific function that generates the arms. The first input into MakeDefaultArms() is the angle of how bent you want the arms to be, and the second value is merely the name of the object which it will use to give a specific name to the arms.
fn MakeDefaultArms bendAngle objName textureMainPath:textureMainPath = (include \ "Script_DefaultArms.ms")
Elsewhere in the script, when this specific function is called, it makes reference to another script, which contains the actual arm generation. The output of this function will be “listOfArms” which is an array that contains the arms that have been applied to the object.

Arms from “listOfArms” array is input into the qArray array which should contain all aspects of the object.
ManipulateSurfaceTexture()

If you want a wrinkly object, than this function will add the “displace” modifier to the surface, which can contort and deform the shape. Here I give it reference to an png file called “noise2d” in order for it to generate random contorsions throughout the entire surface. The object body is returned as the output of the function
ManipulateTransparency()
	for qArrayCount = 1 to qArray.count do(
		if qArray[qArrayCount] != undefined then(
			if (transparency== "Transparent") then(
				qArray[qArrayCount].material.opacity = 25
)
)
)
return qArray
This typically tends to be the last function to be called and will manipulate the transparency of all parts of an object that can be made less opaque.
Part 6: Other Scripts
Script_OblongBody
This is the script that generates the main body of the Oblong quaddle.
local controlPoint = ffd_3x3x3()
“controlPoint” is assigned as 3x3x3 “free form deformation points” which can later be applied to any object. By adding these ffd control points to objects, we can morph their shapes by moving them around.
local objbody = Box()
objbody.length = 20
objbody.width = 20
objbody.height = 40
objbody.lengthsegs = 10
objbody.widthsegs = 10
objbody.heightsegs = 10
A 20x20x40 (arbitrary 3Ds Max units) rectangle is created and is given the name “objbody”. The length, width and height of the object are all divided into 10 segments (more, or less segments can affect how the object body is deformed later on).
addmodifier objbody (spherify())
addmodifier objbody controlPoint
animateAll controlPoint
The spherify and ffd_3x3x3 modifiers are added to object. “animateAll” allows the objects control point to be modified.
[image: Screenshot 2017-01-30 18]
In order to create the oblong body, there is a number of transformations to be done;
1) We need to stretch along the z-axis by moving the perimeter points of the top layer up and the perimeter points of the bottom layer down
2) The midpoints of the middle layer need to be pushed in towards the centre to “squish” and create more flat faces.
3) Similarly the centre points of the top and bottom layers need to be pushed in towards the centre to make the top and bottom faces more flat
4) The corners of the middle layer are brought in closer to the centre in order to lessen the bulge of the middle.
This is accomplished in the script below.

When we see something like this;
	controlPoint.control_point_2[1]
This is referring to the 2nd control point in our control point matrix. The [1] indicates that we are accessing the x-axis value of this coordinate. [2] similarly would refer to the y-axis and [3] to the z-axis.
	oy11 = controlPoint.control_point_11[2] + midPointIndent
In this case for example, we’re adding “midPointIndent” (which has the value of 0.5) to the default y-axis value of the 11th control point and assigning it to the 11th coordinate.
controlPoint.control_point_1 = [ox1,oy1,oz1]
controlPoint.control_point_10 = [ox10,oy10,oz10]
controlPoint.control_point_19 = [ox19,oy19,oz19]
controlPoint.control_point_4 = [ox4,oy4,oz4]
…
 The shifted control point values are then assigned to the actual control points.
Side note on Free form deformation coordinate system.
[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCacheContent.Word\sphere photo.png]
The deformation points that are manipulated in the script are numbered 1-27; and each have defined position in 3D space.
[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCacheContent.Word\IMG_3348.jpg]
The coordinate system for the “FFD_3x3x3” modifier is as shown above. Control point numbers are shown in circles and coordinates are shown in brackets.
It’s important to note that the above coordinate system only applies to the ffd_3x3x3 modifier. When using other modifiers, (like the “ffd_box” modifier for example which pretty much does exactly the same thing as the ffd_3x3x3 modifier) then a different coordinate system may be used.
Centring Object
objbody.pivot = objbody.center
objbody.pos = [0,0,0]
After changing the shape of the object, it won’t be in the centre of the grid anymore which is important later on when we need to add arms which rely on the main body being a known fixed position.
We set the pivot point to the objects new centre of mass and set that point to the 0,0,0 coordinate system so that the object is completely centred
Tesselation and increased Polygon count

local polygonner2 = TesselLate()
addModifier objbody(polygonner2)
In this case, “polygonner2” is the tessellation modifier that is being added to the object body to make it more smoothed. An alternative is to you the “TurboSmooth” modifier which is another modifier that can increase polygon count in a different way.
oblongOutput = #(controlPoint,objbody,polygonner2)
return oblongOutput
Output of the oblong script. It is fed into the “MakeBody” function in the FunctionsList.ms script which is then fed into the “MakeObject” function which will put everything together.
Script_PyramidalBody
Everything in this script works similarly to how the oblong is made, with the exception that the control points are translated in different ways.
[image: Screenshot 2017-01-30 19][image: Screenshot 2017-01-30 19]
The control points are modified in the script in the following ways;
1) The top layer is shrunk to have the object point sharply at the top.
2) The bottom two layers are expanded in length and width to give a fatter bottom
3) The bottom layer is brought closer to the middle layer, and the top layer is raised to create a bulge at the bottom and a more “pointy” top.
4) The centre of the bottom layer along with the midpoints of the middle layer are brought to the centre of the object to create flat faces.

NOTE: There are many other scripts which generate object bodies. Here I have mostly covered the oblong script, and briefly discussed the pyramidal script, however these scripts all work similarly.
Some may use additional modifiers to have differing shapes, however the use of modifiers has also been outlined above as well.
Script_MakeDefaultArms
local arm= cylinder()
arm.radius = 4.0
arm.height = 25
arm.heightsegs = 10
Creating cylinder named “arm” and assigning dimensions
	addmodifier arm (bend angle: bendAngle)
Adding the “bend” modifier to the arm, and giving it an angle of bendedness depending on the input to the function.
	arm.name = objName + "_Arm001"
For the purpose
branchPath= textureMainPath + "70_70_70" + ".png"
arm.material = standardMaterial diffuseMap:(Bitmaptexture fileName: (branchPath)) showInViewport:true;
Assigning grey colour to arm, based on png texture
	listOfArms = #(arm,instance arm,instance arm,instance arm)
Here we are creating an array called “listOfArms” and filling it with instances of the arm we created. These “instances” are essentially copies of the arm we just created and any modifiers we add to the original arm will be applied to all arms.
rotate listOfArms[1] (eulerangles 0 90 0)
rotate listOfArms[2] (eulerangles 0 90 180)
rotate listOfArms[3] (eulerangles -90 90 0)
rotate listOfArms[4] (eulerangles 90 90 0)
Here, we’re using the rotate tool to position each of the four arms we just stored in the array on each face of the oblong rectangular shape we created.
listOfArms[1].pos = [5,0,0]
listOfArms[2].pos = [-5,0,0]
listOfArms[3].pos = [0,5,0]
listOfArms[4].pos = [0,-5,0]
Here, we’re setting the x,y,coordinates of each arm. Notice how each arm is embedded into the body by the same amount.
	return listOfArms
Output of script is the array containing all cylinders.
Script_TakePics
As previously mentioned, this script takes in two input floats;
1) angle above the object from which the photo is taken
2) Distance to the object
qqArray.pivot = [0,0,0]
qqArray is the complete object body (with arms attached to main body). The pivot is set to zero, so that when we want to take photos of the object from different angles, we can rotate the object in the way we want.
circ = circle()
circ.radius = abs (cos(anglevalue) * camdistance)
circ.pos = [0,0,(sin(anglevalue) * camdistance)]

We create a circle that the camera will be bound to and ultimately denotes the camera’s position. Using trig we can calculate the camera’s x and z coordinates, for the specificied angle and distance we want.

cam = freeCamera()
cam.type = #target
cam.target.pos = [0,0,0]
We create a camera called cam and have it’s eyes centred on the object (cam.target.pos = [0,0,0]).
pc = path_constraint()
pc.path = circ
cam.position.controller = pc
A path constraint basically means that the camera’s position/movement is only limited to the lines defined to specific lines. In this case, the path constraint is set to the circle which means that the camera can only rotate around the object at a fixed height.
[image:]
^This is what the camera would look like in the viewport
	
- -since camera is locked to path constraint of the circle, rotating circle will move camera
viewport.setType #view_camera
anglestring = anglevalue as string
fileNameForPic = fileNameForPic + "pictures\\" + anglestring
makeDir fileNameForPic
- -smoothhighlights is a render setting
viewport.SetRenderLevel #smoothhighlights
picturelocation = fileNameForPic + "\\" + anglestring + "_0deg_rotation_" + picname + ".jpg"
render outputFile: (picturelocation) vfb: off outputSize: [1280,720]
picturelocation = fileNameForPic + "\\" + anglestring + "_0deg_rotation_" + picname + ".png"
render outputFile: (picturelocation) vfb: off outputSize: [1280,720]
- -rotate camera and take photos again
rotate qqArray (eulerangles 0 0 45)
picturelocation = fileNameForPic + "\\" + anglestring + "_45deg_rotation_" + picname + ".jpg"
render outputFile: (picturelocation) vfb: off outputSize: [1280,720]
picturelocation = fileNameForPic + "\\" + anglestring + "_45deg_rotation_" + picname + ".png"
render outputFile: (picturelocation) vfb: off outputSize: [1280,720]
rotate qqArray (eulerangles 0 0 -45)
Object is rendered to a jpg and png in both its native rotation and then rotated 45 degrees for another photo. The object is then rotated back to it’s original orientation.
delete circ
delete cam
Circle path, and camera is deleted at the end of the function.
Script_TakeVideo
The takevideo script is extremely similar to the takepics. It takes the same two input arguments;
1) Angle above the object from which the video is taken
2) Distance to the object
I will emphasize here, the parts that are different.
light1 = Targetspot pos:[0,70,70] target:(targetObject pos:[0,0,0])
light2 = Targetspot pos:[0,-70,70] target:(targetObject pos:[0,0,0])
light3 = Targetspot pos:[0,-70,-70] target:(targetObject pos:[0,0,0])
light4 = Targetspot pos:[0,70,-70] target:(targetObject pos:[0,0,0])
light5 = Targetspot pos:[70,0,70] target:(targetObject pos:[0,0,0])
light6 = Targetspot pos:[-70,0,70] target:(targetObject pos:[0,0,0])
light7 = Targetspot pos:[-70,0,-70] target:(targetObject pos:[0,0,0])
light8 = Targetspot pos:[70,0,-70] target:(targetObject pos:[0,0,0])
with animate on(at time 100 rotate qqArray (eulerangles 0 0 360))
viewport.SetRenderLevel #smoothhighlights
picturelocation = fileNameForPic + "360_rotation" + picname + ".avi"
render outputFile: (picturelocation) vfb: off outputSize: [640,360] fromframe: 0 toframe: 100
The TakeVideo script creates a set of 8 lights that equally illuminate the object from all angles. The object is then animated and this animation is saved as an avi file.
delete light1
delete light2
delete light3
delete light4
delete light5
delete light6
delete light7
delete light8
delete circ
delete cam
The lights, circle and camera are then deleted after the video is taken.
[image: C:\Users\Milad\AppData\Local\Microsoft\Windows\INetCache\Content.Word\lights.png]
^This is what the set up would look like from the viewport.
image2.png
¢\ 3ds Max Free Download X

& > C | @ Secure | https;//www.autodesk.com/education/free-software/3ds-max
{\ AUTODESK

Education home Free software Learn & teach Competitions & events Prepare & inspire Support

3 3Ds MAX

3ds Max
3 3ds Max software provides a comprehensive 3D modeling, animation, rendering, and compositing
solution for games, film, and motion graphics artists. 3ds Max has tools for crowd generation,
MAX particle animation, and perspective matching, as well as support for DirectX 11 shaders.

System Requirements

| have an account I need an account

SIGN IN > CREATE ACC

Sign in or create an account above to get started

About Autodesk Education

SIGN IN

FEEDBACK

image3.png
™M Inbox (6 x (M Autodes x ([LI, Underg: x ([} YorkUn x ([} YorkUn x ([3 YorkUn x (¢\ Educatic x (#§ Autode: x (@2 Mail-fi x / §\ Autode: x - X

& C' | @& Secure | https://accounts.autodesk.com/Education/EducationAddtionalinfo?ReturnUrl=%2Fauthorize%3Fviewmode%3Diframe%26lang%3Den%26uitype%3Deducation%26realm ¥¥

Just one more step A .

Tell us about your educational institution and how
you plan to use your free software

York University

Area of study

E Architecture, Engineering & Construction

E Media & Entertainment

E Product Design & Manufacturing

Others

September v 2014 v

Month v Year v

image4.png
{\ AUTODESK. S/ SEARCH o GEORGE FISCHER | SIGN OUT

Education home Free software Learn & teach Competitions & events Prepare & inspire Support About Autodesk Education

Welcome back,= Sign out My account

3ds Max 2017 " @®
Windows 64-bit " @®
English " @®

Serial number: :

Product key: 12811 M
o o

Files size: 7.15GB 2

Authorized Install on up to 2 personal devices

usage:

An email containing the license information above has been sent to you.

+ You are receiving an Educational license See more

+ Installation restrictions apply ~See more

+ Managing licenses for multiple campuses ~ See more

INSTALL NOW

image5.png
[Autodesk license details - Google Chrome:

@ Secure | https://outlooklive.com/owa/projection.aspx

& Replyall|v T Delete Junk|V eee

Licensee's product icense information:
Product: 3ds Max 2017

License Type: Education Stand-alone

Access Type: Single-user

Authorized Usage: Install on up to 2 personal devices*
Product Key:

Serial Number:

Term: 3-year term

Licensee:

* Your Autodesk Account may display this usage right as 1 seat.

During installation, enter this product key and serial number. The first time you start the
product, you will be prompted to activate your license. This date marks the start of your
three-year term.

Getting started:

Education Resources for students & educators
Autodesk Design Academy

Thank you
Autodesk Education Team

12:52 PM

2017-06-29

image6.png
o Open

Move to Dropbox

Shred

Run with graphics processor >
Open file location
Enable/Disable Digital Signature Icons
& Run as administrator
Troubleshoot compatibility
Pin to Start
[scan with windows Defender...

@ Scan

Pin to taskbar

Restore previous versions

Send to >

Cut

Copy
Paste

Create shortcut

1) Delete
& Rename

9 I Properties

3 3ds Max 2017 Properties X

General Shortcut Compatibility Security Details Previous Versions.

If this program isn't working correctly on this version of Windows, try
running the compatibiity troubleshooter.

Run compatibility troubleshooter

How do | choose compatibility settings manually?

Compatibility mode
] Run this program in compatibility mode for:

Windows 8

Settings
Reduced color mode

8-bit (256) color

Run in 640 x 480 screen resolution

[Disable display scaling on high DP! settings

&) Change settings for all users

oK Cancel Apply

image7.png
UTODESK' 3DS MAX' 2017

{\ AUTODESK

Starting 3ds Max...

image8.png
B Oedh-@

it Took Group Vie

S nied [l wec oo phe]

Create Modifiers Animation Graph Editors Rendering Civil View Customize Scipting Content Help

D a? 1y

2| i @ " >

Selec

RECENT FILES START-UP TEMPLATES

object_set_examy A i

June 28,2017 12:16 P4 ! i
i . Sample i Sample - Outdoor

Untitled_recover

Nan

"<+ Dunes, 2017 1:10 M

priginglStarey Outdoor 3PM i .cwrtvardiﬁ ii

33

distractor_extreme_1

May 29, 2017 11:49 PM N ——

making distractors_recover_recover e

May 29, 2017 7:03 PM

making distractors_recover

May 25, 2017 5:50 PM

_, making distractors v
Open Template Manager "New Using Selected Template’

2 Show this Welcome Screen at startup Learn Start Extend

kspace: Default

e x v

Grld = 100
e { 10
200PM
20170620

~ @ = dx NG

image9.png
e PFRE

Modeling Freeform Selection Object Paint Populate &~
Paint Objects | Brush Settings
Select Display Edit Customize [+1[Top] [Standard] [Wireframe |
x
Name (Sorted Ascending)
©= 0 (default)
.
[+] [Left] [Standard] [Wireframe]
. S
< i < 0/100 >
I | . B |
Workspace: Default o | Il i i
None Selected B x: 21077

Click or dick-and-drag to select objects

[+]1 [Front] [Standard] [Wireframe]

2

[+] [Perspective] [Standard] [Default Shading]

i

bl

40 50 60 70 80

Y: -91.857 Z: 0.0 Grid = 10.0 I

Auto

i) Add Time Tag

+ A5 @m
Ml @etunr=s
Standard Primitives v
v Object Type
AutoGrid
Box Cone
Sphere GeoSphere
Cylinder Tube
Torus Pyramid
Teapot Plane
TextPlus
A v Name and Color
) —r []
100
MR IR N SRl
Filters... “» 0 10 >y oM

2:03 PM

5 L] ENG N
u b 2017-06-29 53

image10.png
(3]
D PR

Modeling | Freeform

ivil View Customize ripting Content Help

v !al + u 3/)‘b/-) % ¢.') {}, Create Selection Set v .i

Polygon Modeling
E = demonstration

Select Display Edit Custo ¥ [Default Shading] + EZE EEC YL AN
X 2 .
[@] Name (Sorted Ascending) -
© 0 (default) Modifier List v
» arms
» intermediate layers

© = demonstration
messin around 2

messinaround

pyrs
s &

4
4
4
4

< 0/100 >
= i 2 B |
68 | SHiemSLE oop 10 20 30 40 50 60 9% 100
B x Y: z Grid = 10.0 Auto Selected Y k< dl } > »l O &
[E) rddTime Tag L" etk | 7 Fles.. | 0 i > 4.2, .

5:30 PM E
2017-01-30 3

©
g

& ®m dx NG

£

w m 4 HO ~

image11.png
Y F N i

cooum T

Viodeling Freeform Selection

Tow'e "Select and Move tool"
ColC) /N

Polygon Modeling ~

ST e kRS

Select Display Edit Customize [+] [Perspective | [Standard] [Default Shading] Q =
xHatzs * Modify Object

e Gt o Dimensions

intermediate layers
messin around 2 o
messinaround gth: 21.337

pyrs v Width: 15.44
rects Height: 19.191

Coordinates of Object r—

Width Segs: 1
Height Segs: 1

¥ Generate Mapping Coords.
Real-World Map Size

| Workspace: Default Bl = | selection set: n & % 100

1 Object Selected B x:[135.008 Y: -84.225 Auto Selected Y el b‘ > »l O & [n]‘ 41‘
Modify 5] Add Time Tag I‘: setk. JU, | Filters.. 0 10 >R oM

image12.png
) C

image13.png
DS FREM
Modeling | Freeform

< 0 'mn'®

Object Paint

oene & o

Polygon Modeling ~

(= I kRS

Select Display Edit Customize

xHa+tz=

Name (Sorted Ascending) 4 Frozen
© 0 (default)
arms

intermediate layers

messin around 2
messinaround
pyrs

rects

[+] [Perspective] [Standard] [Edged Faces]

» <
Workspace: Default Bl = scectonser
1 Object Selected
3 Click or dick-and-drag to select objects
== OAsk me anything \Q)

Populate o - Spherify

Symmetry
Taper
Tessellate

Spherify v

v Parameters

Length: 20.0
Width: 20.0
Height: 40.0

o o

£

-

0/100 > Length Segs: 10
108 Width Segs: 10
MR IR N SRl

| Add Time Tag Filters... <« 0 $Q >R,

o wE m 4 H 6 AG®D & me 0™

2017-01-30 L6

-

|
v L) 10 20 30 40 50) 70)
w8 B x[125992 v 46.103 z:00 Grid = 10.0 Auto
I; SetK.

image14.png
L@ TN Rl R B0 (T i

Object Paint Populate ~ ©@~

DS FREM
Modeling | Freeform

< 0 'mn'®

2: FFD 3x3x3 -
e ® e
Polygon Modeling ~

(= I kRS

Select Display Edit Customize

xHa+tz=

Name (Sorted Ascending) + Frozen

[+] [Perspective] [Standard] [Edged Faces]

© 0 (default) Modifier List v
> arms. o »
E o= © Spherify
©0 k] Box

» intermediate layers

messin around 2
messinaround

pyrs
rects

v FFD Parameters

Display:
v Lattice
ik Sourcevalume
< 0/ 100 > Deform:
Workspace: Default Bl = scecionset g, I I L 30 o i I i o o 1. © Only In Volume
1 Object Selected w A B oxsren Y: 12501 z:/0.0 Grid = 10.0 _b Auto Selected Y k< dl b‘ > »l O &
Click or dick-and-drag to select objects &) Add Time Tag SetK. jmi‘ Filters... “» 0 3 3

image15.png
i ¢

image16.png
1 [Edged Faces |

] [Edged Faces |

After

Before

V
o

|
““!‘:‘-!!I'

image17.png
/19 - Default

v Shader Basic Parameters

Blinn v

v Blinn Basic Parameters

Ambient:

Diffuse:
Specular:

v Standard
Wire 2-Sided
Face Map Faceted

Self-Tllumination

-

Color 0

Sl

-

image18.png
Bitmap

d
E
|
I

i
- librarytest.mat

| Diffuse Color:
i Diffuse Color:

+ MatLibTutorial. mat

+ Maps

- Scene Materials
{Il piffuse Color:
1 Diffuse Color:
1 Diffuse Color:
1 Diffuse Color:
1 Diffuse Color:

1 Diffuse Color:
JE niffuce Color:

+ Sample Slots

Maps - General

LB
Map #11 (stripes_col1(verm)_col2(blu)_nstrp8.png)
Map #10 (squares_col1(verm)_col2(yel)_nstrp8.png)

LB
Map #12 (Stripes.png) ‘
Bitmaptexture (Checkers_Red-+Blue.png)

Bitmaptexture (Checkers_Red-+Blue.png)
Bitmaptexture (Checkers_Red-+Blue.png)
Bitmaptexture (Checkers_Red-+Blue.png)
Bitmaptexture (Checkers_Red-+Blue.png)
Ritmantextire (Chackere Red+Rlie nna)

image19.png
3. Select Bitmap Image F

History: ~ C:\Users\Milad\Desktop\texturestest v

Quick access

[

Deskt
e Checkers | Checkers_Red+Blue Checkers_Red+V... Stripes Stripes_Red +Blue

Libraries

Stripes_Red+Verm

File name: Stripes

Files of type: All Formats

Name template:

: Gamma
Devices.
® Automatic (Recommended)
Override
Info.
View Sequence ¥ Preview

Statistics: 520x520, RGB Color 8 Bits/Channel - Single Image
l Location: C:\Users\Milad\Desktop\texturestest\Stripes.png
e caassvasw = @200 0 -

image20.png
J
J

B o & e
.
Diffuse Color: /7 [Map #0
v Coordinates
® Texture Environ Mapping: Explicit Map Channel
Map Channel: 1
Use Real-World Scale
Offset Tiling ~ Mirror Tile Angle
U: 0.0 E £ B v U:00
V: 0.0 5 Eg B v V:00
euw w w w0y
Blur: 1.0 4 Bluroffset: 0.0 Rotate

-

o o o

- v L.

/79

v

Ard

image21.png

image22.png

image23.png
cPEN TRE

Modeling Freeform Selection Object Paint Populate ~ ©@~
7 9'm®
3: UVW Map

Ll el il
Polygon Modeling ~

g o HEERS

+ 45 @m 3\

Select Display Edit Customize [+] [Perspective] [Standard] [Defaut Shading]
v -

X atsT *rect modified (just height)]

Modifier List v

Name (Sorted Ascending) 4 Frozen
© 0 (default)
13 arms
E ©= demonstration
» intermediate layers
» messin around 2
§ » messinaround
Yo s
© @ *pyr mod (just height2)
© @ pyr mod
© @ pyr mod (just height)
© @ pyr mod(just U)

© » FD33x3
© Spherify

© @ Frect modified (just height)
© @ rect modified i
© @ rect modified (just U)

70 80 90 100
Auto Selected Y kAP I O BT

1 Object Selected w A B x47632 400 4 7:-200 4 Grid = 10.0
Click and drag to select and move objects] Add Time Tag I“- setk. JU, | Filters.. 0 $Q > &,

I Workspace: Default 5 | Selection Set: n " b0 30 2 50 60

image24.png
oc PRA™

Modeling

Freeform

Polygon Modeling
E = demonstration

Select Display Edit Custc
X
/ [®] Name (Sorted Ascencing)

© 0 (default)
13 arms
v O = demonstration
@ o e boois

» intermediate layers

messin around 2

messinaround

moreobjects.ma:

pyrs
® *pyr mod (just height?)
® demo pyr

® pyrmod

@ pyr mod (just height)
® pyr mod(ust U)

® pyroG

m 2 redts

L Workspace: Default

None Selected

Cylinder

o Ask me anything

Selection Set:

50

60
Grid = 10.0

Add Time Tag

90 100

Auto Selected Al
Ie" setk. T, Fitters.. «

image25.png
[+] [Perspective

10 20 30 40 50 60 70
= 4 M x00 4. 0.0 42:00 4 Grid = 10.0 I
m Add Time Tag

image26.png
e L

r) C’ (:9 2
Modeling | Freeform

< 0 'mn'®

rT WS Click Rotate tool first

Polygon Modeling ~

= S HEERS

G !!” -r-ﬂ 3” ‘7"”(m—

o KRl e
-

]

I Select Display Edit Customize [+] [Perspective] [Standard] [Default Shading] + 7 m @ m 3
xHa+teT . s
T B Rotate Object Manually= — |
0 (default) Modifier List v
2202 govmioin

© @ Box013

© @ Cylinder029

E intermediate layers
messin around 2

messinaround
© pyrs
¢ @ *pyr mod (just height2)

® demo pyr Radius: 4.0 5
@ pyr mod Height: 25.0 B
< @ pyr mod (just height) Height Segments: 10 4
§ @ pyr mod(just U) Cap Segments: 1 s
g 5 ® pyroG)%Z Sides: 24 :
s in desired le bel e

R ...or put in desired angle below + e

u Workspace: Default . | Selection Set: n L\’ & o 108 Slice On

1 Object Selected w g3 X o 4 z: j90. i X Auto Selected YA I 0B,
Click and drag to select and rotate objects) Add Time Tag I“- setk. T Filers.. «* D0 t@ > rPM

image27.png
[+][Top] [Standard] [Wireframe]

-

image28.png
3

[+] [Perspective] [Standard] [Default Shading]

B I 10 20 30 40 50 60)
L]

w8 B x50 4 Y00 47:00 4 Grid = 10.0

m Add Time Tag Filters...

+ @

Cylinder029

image29.png
Object Paint P -
| [Perspective | [Useﬁr = efault Shading |

© @ Body(Pyramidal)+Colour(Mo
© @ Body(Pyramidal)+Colour(Mo
© @ Body(Pyramidal)+Colour(Mo
© @ Body(Pyramidal)+Colour(Mo
© @ Body(Pyramidal)+Colour(Mo
© @ Body(Pyramidal)+Colour(Mo
© @ Body(Pyramidal)+Colour(Mo
© @ Body(Pyramidal)+Colour(Mo
© @ Body(Pyramidal)+Colour(Mo
© @ Body(Pyramidal)+Colour(Mo
© [®&] Body(Pyramidal)+Colour(Mo
© @ Body(Pyramidal)+Colour(Mo
© @ Body(Pyramidal)+Colour(Mo
© @ Body(Pyramidal)+Colour(Mo
© @ Body(Pyramidal)+Colour(Mo
© @ Body(Pyramidal)+Colour(Mo

0/100 >
|
) 10 20 30 40 50 60 70 80 90 100
5 Objects Selected " A Bx Y z Grid = 10.0 Auto Selected Yo
I; setk. JU, | Filters.. <

Group

image30.png
) e

Export files from 3ds Max

] [Default Shading |

Export Selected
Export only selected objects as non-
native file formats from the current 3ds
Max scene.

g Save As —, Export to DWF

=) | Import

rt the curr

Manage

Properties b

Workspace: Default

0 10 20 30 40 50 60 70 80 % 100
1 Group Selected w A B x 702025 4 $7:00 4 Grid = 10.0 l Auto Selected Yl
Click and drag to select and move objects) Add Time Tag " [setk. T, Filters «

image31.png

image32.png
Export

image33.png
Export Selected
Export only selected objects as non-

native file formats from the current 3ds
Max scene.

image34.png
Presets
Current Preset: User defined v
v Include
» Geometry
» Animation
» Cameras

Lights

» Advanced Options

v Information
FBX Plug-in version: 2017.0.1 Release (241562)

Help on FBX

Edit... OK Cancel

image35.png
s Q
33 or

@ Or

P Ne

22 items

" Patterns and Object Table
5] Copyright info (MIT License)
) copyrightGUI

) FunctionsList

[HELP

) Main_Script

) Script_AlternativeArms

) Script_CompressedOblongBody
) Script_ConcaveBody

) Script_ConvexBody

) Script_CubicBody

) Script_CustomAmalgamBody
) Script_CustomPyramidBody
) Script_DefaultArms

) Script_DumbbellBody

4 Script_OblongBody

) Script_OctahedronBody

) Script_PepperBody

) Script_PyramidalBody

) Script_SphereBody

) Script_TakePics

) Script_TakeVideo

image36.emf
sys Info.currentdir : The current directory. Set it to folder path of “Main_Script.ms ” savePathBase : Where you want to save the picture , video and fbx files of your objects t extureMainPath : The folder path wher e all your textures/patterns are located objTable (O PTIONAL): If folder path is specified , script will take a simple binary table to know which objects to make. If not specified , the script will g enerate all possible ob ject feature combinations.

oleObject1.bin

image37.png
QuaddeGenerator
Copyright © 2017 Miad Naghizadeh, Marcus Watson, Ben Voloh, Thio Womelsdorf, Attention Crts Control Lab

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation fies (the “Software),to
dealin the Software without restricton, induding without imitaton the rghts to use, copy, modfy, merge, pubish, distribute, subicense, andjor sell
copies of the Software, and to permit persons to whom the Software s furmished to do so, subject to the folowing conditons:

The above copyright notice and this permission notice shal be incuded i al copies or substantialportions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR

(COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
'ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR GTHER DEALINGS IN THE SOFTWARE.

Continue

image38.emf
try (closeRolloutFloater rof) catch() rof=newrolloutfloater "Copyright notice" 800 300 rollout copyRight "Copyright License" width:800 height:300 (label 'mitInfo' copyrightSchpiel pos:[39,13] width:731 height:209 style_sunkenedge:false \ align:#left button 'continueButton' "Continue" on continueButton pressed do ((… (O bject generation happens here)) closeRolloutFloater rof)) addRollout copyRight rof rolledUp:off

oleObject2.bin

image39.png
3 unnamedRollout - Visual MAXScrpt

File Edit Layout

Properties Events

Propety Value

class rollout

name unnamedRallout
caption __| Untitled

xpos 10

y-pos 10

width 162

height E)

enabled | true

image40.png
7 object table - Noteped

Help

Fle Edit Format View Hel

P OO AO IO ®

PO AN A ®® o

P OO A AAOO® ® h o

COOOO® O ® ot ot

image41.emf
if (readTheTable == true) do (savePathFinal = savePathBase seek objTable 0 while not(eof objTable) do (objDetails = readLine objTable for dimCount = 1 to ((objDetails.count + 1)/2) do (objvals[dimCount] = vals[dimCount][objDetails[((2*dimCount) - 1)] as integer + 1]) MakeObject()))

oleObject3.bin

image42.emf
for dimCount = 1 to ((objDetails.count + 1)/2) do (objvals[dimCount] = vals[dimCount][objDetails[((2*dimCount) - 1)] as integer + 1])

oleObject4.bin

image43.emf
global objVals = #() global allObjects = #() if readTheTable == false do (global i = 0 DefineAllObjects(1) for objectCount = 1 to allObjects.count do (objVals = allObjects[objectCount] MakeObject()))

oleObject5.bin

image44.emf
f n DefineAllObjects dimCount = (for valCount = 1 to vals[dimCount].count do(objVals[dimCount] = vals[dimCount][valCount] if dimCount != vals.count then (DefineAllObjects(dimCount+1)) else if dimCount == vals.Count then (i = i +1 temp = copy objVals #nomap allObjects[i] = temp print (((allObjects.count) as string) + " " + (allObjects as string)))))

oleObject6.bin

image45.emf
objName = d ims[1] + "(" + objVals[1] + ")" if objvals.count > 1 do (for dimCount = 2 to objvals.count do (objName = objName + "+" + dims[dimCount] + "(" + objVals[dimCount] + ")")) print objName

oleObject7.bin

image46.emf
 if findItem dims "Body" != 0 do (bodyResult = MakeBody() objbody = bodyResult[1] polygonner = bodyResult[2] qArray = bodyResult[3]) if ((findItem dims "Pattern" != 0) or (findItem dims "Colour" != 0)) do (textureResult = ApplyTexture() textureMainPath = textureResult[1] map = textureResult[2] objbody = textureResult[3] outMap = textureResult[4]) if findItem dims "Arms" != 0 do (armResult = MakeArms() listOfArms = armResult[1] qArray = armResult[2]) if findItem dims "Smoothness" != 0 do (objbody = ManipulateSurfaceTexture()) if findItem dims "Transparency" != 0 do (qArray = ManipulateTransparency())

oleObject8.bin

image47.emf
-- EXPORTING select qArray fileDir = (savePathFinal + "fbxFiles \ \ ") makedir fileDir fileName = (fileDir + objName + ".fbx") -- exporting textures along with the object FBXExporterSetParam "EmbedTextures" true exportFile fileName #noPrompt selectedOnly:true using:FBXEXP delete qArray

oleObject9.bin

image48.emf
 if (body == "Oblong") then(bodyResult = MakeOblongBody(pattern) co ntrolPoint = bodyResult[1] objbody = bodyResult[2] polygonner = bodyResult[3]) else if (body == "Pyramidal") then(bodyResult = MakeCustomPyramidBody(pattern)(0.8) controlPoint = bodyResult[1] objbody = bodyResult[2] polygonner = bodyResult [3])

oleObject10.bin

image49.emf
if ((findItem dims "Pat tern" != 0) and (findItem dims "Colour" != 0)) then \ \ (-- texture for main body texturePath= textureMainPath + "Pattern(" + objVals[findItem dims "Pattern"] + ")+Colour(" + \ objVals[findItem dims "Colour"] + ")" + ".png" pattern = objVals[findItem di ms "Pattern"] colour = objVals[findItem dims "Colour"])

oleObject11.bin

image50.emf
else if (findItem dims "Pattern" == 0) then (texturePath= textureMainPath + "Colour(" + objVals[findItem dims "Colour"] + ")" colour = objVals[findItem dims "Colour"]) else if (findItem dims "Colour" == 0) then (texturePath= textureMainPath + "Pattern(" + objVals[findItem dims "Pattern"] + ")" pattern = objVals[findItem dims "Pattern"])

oleObject12.bin

image51.emf
if (body == "Concave") then (if (pattern == "Polka") then (map.length = 80 map.width = 80 map.height = 120 map.utile = 1 map.vtile = 1 map.cap = true addmodifier objbody map) else if (pattern == "Squiggly") then (map.maptype = 2 map.height = 40 map.utile = 2.5 map.vtile = 2.5 addmodifier objbody map)

oleObject13.bin

image52.emf
append qArray listOfArms[1] append qArray listOfArms[2] append qArray listOfArms[3] append qArray listOfArms[4] a rmOutput = #(listOfArms,qArray) return armOutput

oleObject14.bin

image53.emf
 if (smoothness=="Wrinkled") then (wrinkler = displace() wrinkler.strength = 9 wrinkler.decay = 1 noisePath = textureMainPath + "noise2d" + ".png" wrinkler.bitmap = openBitMap noisePath addmodifier objbody wrinkler) return objbody

oleObject15.bin

image54.png
ard] [Wireframe]

HIRY
/i ‘++‘\ \
/ LA | \
I i \
| \
A/// \\

image1.png

image55.emf
--How much the whole top or bottom layers move up and down topbottomZshift = 0.2

--moving bottom layer corners down

 oz1 = controlPoint.control_point_1[3] – topbottomZshift oz19 = controlPoint.contro l_point_19[3] – topbottomZshift oz7 = controlPoint.control_poin t_7[3] – topbottomZshift oz25 = controlPoint.control_point_25[3] – topbottomZshift -- moving top layer corners up oz3 = controlPoint.control_point_3[3] + topbottomZshift oz21 = controlPoint.contro l_point_21[3] + topbottomZshift oz9 = controlPoint.cont rol_point_9[3] + topbottomZshift oz27 = controlPoint.control_point_27[3] + topbottomZshift midp ointZmod = 0 + topbottomZshift|

--do nothing with corners or center point of the top and bottom layers

--move the midpoints of the bottom layer down

 oz10 = controlPoint.control_point_10[3] – midpointZmod oz4 = controlPoint.control_point_4[3] – midpointZmod oz22 = controlPoint.control_point_22[3] – midpointZmod oz16 = controlPoint.co ntrol_point_16[3] - midpointZmod

--move the midpoints of the top layer up

 oz12 = controlPoint.control_point_12[3] + midpointZmod oz6 = controlPoint.control_point_6[3] + midpointZmod oz24 = controlPoint.control_point_24[3] + midpointZmod oz18 = controlPoint.control_point_18[3] + midpointZmod

--bring centres of top and bottom layers toward the centre of the object

 topbottommidPointZshift = 0.6 oz13 = controlPoint.control_point_13[3] + topbottommidPointZshift oz15 = controlPoint.control_point_15[3] - topbottommidPointZshift

--move corners of middle layer in

 cornerIndent = 0.1 ox2 = controlPoint.control_point_2[1] + cornerIndent ox20 = controlPoint.control_point_20[1] – cornerIndent ox8 = controlPoint.control_point_8[1] + cornerIndent ox26 = controlPoint.control_point_26[1] – cornerIndent oy2 = controlPo int.control_point_2[2] + cornerIndent oy20 = controlPoint.control_point_20[2] + cornerIndent oy8 = controlPoint.control_point_8[2] – cornerIndent oy26 = controlPoint.control_point_26[2] - cornerIndent

--move midpoints of mildde layer in

 midPointIndent = 0.5 oy11 = controlPoint.control_point_11[2] + midPointIndent

oleObject16.bin

image56.png

image57.jpeg
=
T
@
-
o
@

image58.png
andard] [Wireframe |

image59.png
[+] [Top] [Standard] [Default Shading]

image60.png
[+] [Camera001] [Standard] [Default Shading | [#] [Front] [Standard] [Wieframe]

e s

[+] [Left] [Standard] [Wirerame | [+] [Perspective] [User Defined] [Defauit Shading |

image61.png
[+] [Orthagraphic | [Standard] [Wireframe |

=

[+){Top] [Standard] [Wirefiame |

[+] [Front] [Standard] [Witeframe]

