Effective Connectivity Shows Asymmetries in Resonance and Latencies between Medial and Lateral Prefrontal Cortex Connections

The lab has a first article published about the strength, latency and resonance patterns of connections between the anterior cingulate cortex and lateral prefrontal cortex of the macaque. This work was led by postdoc Veronica Nacher and is published in Brain Structure and Function.
The paper identifies a novel electrical microstimulation protocol that can be used to map the efficacy of synaptic connections between distant brain structures.
We found that dACC stimulation-triggered evoked fields (EFPs) were more likely to be multiphasic in the lateral prefrontal cortex than in the reverse direction, with a large proportion of connections showing 2–4 inflection points resembling resonance in the 20–30 Hz beta frequency range. In addition we found that stimulation of dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (lPFC) resulted, on average, in shorter-latency EFPs than lPFC → dACC. Overall, latencies and connectivity strength varied more than twofold depending on the precise anterior-to-posterior location of the connections. The Preprint pdf is linked here, the Brain Structure and Function pdf is linked here.

Related News

Striatum interneurons track learning of attention cues

Our new paper shows how fast spiking interneurons in the striatum activate specifically when attention cues are learned. This is a rare paper where we succeed to isolate fast spiking interneurons in recordings from nonhuman primate anterior striatum while the animals performed a complex feature-based attentional learning task. Phd can. Kia Banaeie Boroujeni spearheaded the […]

Fronto-Striatal Circuits Optimize Feature-based Attention and Learning

Our new publication (Oemisch et al. (2018) Feature Specific Prediction Errors and Surprise across Macaque Fronto-Striatal Circuits during Attention and Learning) provides the first 4-brain-area survey of how prediction error information in the anterior cingulate – ventral striatum and lateral prefrontal – caudate fronto-striatal loops relate to feature-based attention and learning. We found prediction errors […]

Phase-specific Activation Induces Latent Connectivity Changes

A recent paper provides rare causal evidence that phase-specific stimulation during beta oscillation bursts lead to transient changes in effective (latent) connectivity. This finding and its potentially widespread implications are discussed in our paper Womelsdorf T, Hoffman K (2018) Latent Connectivity: Neuronal Oscillations Can Be Leveraged for Transient Plasticity. Current Biology. 28(16):R879-R882..