Theta and Beta Frequency

Theta and beta frequency range coherence between anterior cingulate cortex and frontal eye field indexes the successful preparation for anti-saccades and maintenance of working memory content – with larger ACC to FEF direction of granger causal information flow! These important findings is now published in Nature Communications by Sahand Babapoor-Farrokhran and Stefan Everling with contributions from Martin Vinck and our lab – This is a particular important finding as neuronal coordination between prefrontal and anterior cingulate cortex at the identical frequency ranges characterize successful attention shifts and adjustments following errors – thus there is clear link of prefrontal attentional control signalling to the actual implementation of attentional selection in FEF (and parietal) networks – Congratulations for this major achievement ! The article Theta and beta synchrony coordinate frontal eye fields and anterior cingulate cortex during sensorimotor mapping can be downloaded here .

Related News

A Novel Monkey Kiosk: Cognitive Enrichment and Cognitive Assessment

We now published the hardware and software design for a novel Monkey Kiosk Station that provides cognitive enrichment and the ability to assess cognition with cage-based touchscreen tasks. The paper and its appendix with the technical details are available here.

First Neuropharmacological Contribution

Congratulations to Ali and Mariann for the first neuropharmacological contribution from our laboratory with the article A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque . This study first surveys all 14 different tasks that have ever been used with Guanfacine in nonhuman primate studies and than […]

Acetylcholine, Dopamine, and Glutamate measured in three brain areas with a new SPME-probe

Our new paper shows reliable Multi-Neuromodulator measurements in the awake nonhuman primate in prefrontal cortex, premotor cortex and the basal ganglia using a new chemical sensing probe. The probe uses principles of Solid-Phase-Microextraction and is a development by the SPME pioneer and collaborator Prof. Janusz Pawliszyn from the University of Waterloo. The paper can be […]